

Oneubium (pronounced oh-NEW-bee-yum) is a synthetic element with the symbol **On** and the atomic number 126.

A very stable and unconventionally radioactive element in the actinide series, oneubium was initially discovered in extremely low concentrations in reactor fuel rods as a byproduct of momentary critical reactions and was named for the initials of the researchers that made the discovery: Dr. Taseo Otana PhD, Dr. Beverly Nussbaum PhD, Dr. Cyril Estes PhD, Dr. Evelyn Underwood PhD, and Dr. Janine Benet PhD. The refinement process the researchers pioneered is used today to extract nearly all known quantities of oneubium. In addition to reactor byproducts, some microgram samples have also been generated by supercollider research.

A brittle metallic element of limited ductability and malleability, the boiling point is 5421°C or 9789°F, slightly higher than tantalum. The melting point is 639°C or 1182°F, similar to that of aluminum. The density of oneubium is 14.7 g/ml; denser than lead but less than gold.

Only the isotope ³⁶¹On is known to exist, based on a very limited worldwide stockpile gathered from decades of fission power and weapons research. The isotope has not been observed to oxidize and is not soluble in known acids. In the absence of contravening evidence, oneubium is considered to be the heaviest inert element.

Oneubium does not exhibit conventional neutron fission due to the ratio of protons to neutrons. However, the element produces tachyon emission without external stimulus. Following tachyon depletion, the quantum-level redistribution of neutron mass causes atomic disintegration with few excess particle emissions. Tachyons, having large concentrations but individually insignificant mass, cause oneubium atoms to decay into less massive elements not from nucleic collision but by a gradual process of cohesive attrition. The decay mechanism resulting from tachyon loss has not been fully quantified, but is estimated to resemble a half-life of several hundred thousand years. Tachyon production is believed caused by tidal forces in the massive nucleus, and researchers theorize that a nucleus producing a sufficiently large simultaneous tachyon release may generate a resulting harmonic chain reaction release of tachyon particles in nearby oneubium nuclei. This elemental transformation via subatomic particle diffusion is unique to oneubium among all known elements. The products of oneubium tachyon diffusion are equal molar quantities of stable isotopes of ytterbium (Yb) and barium (Ba).